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The problem “if an object at the average distance of the Earth from the Sun could
suddenly lose its (tangential) speed with respect to the Sun, how long would it
take for it to crash into the Sun?” was originally presented to one of us (Dilsaver) by
a colleague to whom a student had posed the question. This natural extension of the
familiar uniform acceleration problems from high-school physics has come to be
known as the “Solar Swan Dive” and leads to some interesting solutions.
Essentially all falling-object problems in high-school physics assume the distance
fallen is insignificant compared with the distance to the center of attraction so that
acceleration is constant. High-school students know that g = 9.8 m/sz, even if they
don’t necessarily fully understand what that means. In the solar swan dive problem,

however, acceleration is variable.

The first impulse for the teacher pre-
sented with such a question might be to
tell the student the solution is beyond the
scope of an introductory physics class
and that he or she should ask again after
a course or two in calculus. Afterall, the
problem involves a second-order, non-
linear, differential equation! A second
impulse might be for the teacher to
think, “I can’t work that problem and I"d
better change the subject as quickly as
possible!” But high-school physics is
sufficient to solve the problem. In fact,
there are a number of possible solutions
that may be understood by students with
no background in calculus. For com-
pleteness, a solution based on calculus
is also included here. For simplicity, all
solutions compute the time to reach the
center of the Sun instead of the surface
of the photosphere.

Method 1: Solution by

Kepler’s Third Law

Kepler’s third law states that for a
planet in an elliptical orbit, the square of
the period, P, is directly proportional to
the cube of the semimajor axis, a. If the
semimajor axis is in astronomical units
and the period is in Earth years, we have

P=d o)

With this relationship we can solve the
solar swan dive problem as follows:
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Consider a family of elliptical orbits in
which each ellipse has one focus at the
Sun and the maximum Earth-to-Sun dis-
tance is fixed at one astronomical unit
(A.U.). Ellipses in this family are dis-
tinguished by eccentricity.

The eccentricity, e, of an ellipse is the
ratio ¢/a, where c is the distance from the
center to either focus. With ¢ + a fixed
at 1 A.U., we have
l-a @

a

e =

which rearranges to

! (3)
l+e
Substituting Eq. (3) into Eq. (1) and
solving for the period gives
=i
P =
1+e

As the eccentricity increases toward
unity, the ellipse becomes almost a
straight line between Earth and Sun.
One-half the period of such an orbit
becomes a close approximation to the
time for a solar swan dive. Of course
this is a limit process, but students
without prior exposure to calculus seem
to grasp the concept easily when pre-
sented with examples of the effect of
varying eccentricity. Six confocal
ellipses with eccentricities ranging from
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Fig. 1. Selected orbits approximating the
solar swan dive.

0.0 to 0.999 are shown in Fig. 1. Table
I gives a list of semiperiods (estimated
“dive times”) for these ellipses. (Figure
1 was drawn with a Strobe Model 100
digital plotter driven by an Apple II Plus
microcomputer. Correspondence from
readers with similar equipment is wel-
comed.)

If we consider the object falling into
the Sun to be in a rectilinear “orbit” (i.e.,
a degenerate ellipse with unit eccentric-
ity), which has semimajor axis equal to
0.5 A.U. and apply Eq. (4) we obtain

P = (05)” ®)

X
Thus P/2 gives a solar swan dive of ?2

of an Earth year, or 64.6 days.

Method 2: Solution by

Computer Approximation

Most high-school physics classes
have access to some type of microcom-
puter. A program can easily be written
to approximate the answer to the solar
swan dive problem. For example, as-
sume the acceleration due to the Sun’s
gravity is constant over a certain short
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Table I. Half-periods of the orbits in
Fig. 1.

Eccentricity Half-Period
of Ellipse (Days)
0.0 182.6
0.5 99.4
0.75 78.9
0.9 69.7
0.99 65.0
0.999 64.6

time, say one-tenth day. Calculate the
distance fallen during that time incre-
ment, recompute the acceleration, and
repeat the process until the Sun is
reached.

This method, which is essentially a
second-order Taylor series solution of
an initial value problem,I will reinforce
the variation in acceleration and allow
students to see more clearly how this
problem differs from their familiar fall-
ing body problems.

A computer solution in generic
BASIC is given in Table II.

Method 3: Solution by

Science Fiction

Many students (and teachers) enjoy
reading science fiction. Occasionally a
reference or an idea in a science-fiction
story can generate some good discus-

sion in a physics classroom. After solv-
ing the solar swan dive problem, we
discovered that in Arthur C. Clarke’s
short story “Jupiter V” reference is
made to “a well-known theorem stating
that if a body falls from an orbit to the
center of attraction, it will take point one
seven seven of a period to make the
drop.”2

This theorem may be well known to
someone well grounded in celestial
mechanics, but perhaps is not to the
average high-school physics teacher.
Clarke’s stories have a reputation for
mathematical accuracy and the theorem
mentioned gives the correct value of
64.566 days for the dive, since
V2

e 0.17677....

Method 4: Outline of a
Solution by Calculus

Let x denote the distance of the fall-
ing object from the Sun at time ¢ after the
beginning of the fall. Then if we let M
and G represent the mass of the Sun and
the universal gravitation constant, re-
spectively, we have the initial value pro-
blem

é _ -GM ©)
ar P

Table II. Sample computer solution of the solar swan dive.

10 REM AT E R I A I A A A AR A A AT AR A AR AR A KA AT AR LA AR I AR A AR AR A AR A AR A Ak ki hhid

20 REM ** THE SOLAR SWAN DIVE xok
30 REM ** %
40 REM ** A TAYLOR METHOD SOLUTION g

50 REM EEEEAAA R A XA XA KA AR A XA AKX XAKAAA AT A A A AR A AR A A XA XA A A Ak hhkhhkhhhhhkkk

60 REM

70 REM M = MASS OF SUN, G = UNIVERSAL GRAVITATION CONSTANT

80 REM X = DISTANCE OF DIVER FROM SUN, INITIALLY 1 A.U.

90 REM V = VELOCITY, A = ACCELERATION, T = ELAPSED TIME

100 REM DT = TIME INCREMENT OVER WHICH A IS ASSUMED CONSTANT
110 REM ALL QUANTITIES IN MKS UNITS

120 REM

130 MG = 1.327E + 20

140 X = 1.495E + 11

150V=0:T=0

160 DT = 8640 : REM 0.1 DAY
170T =T + DT

180 A = -MG/X/X

190V=V+A*DT

200X =X VAR DTS5 XA = DS DT
210IF X > 0 THEN GOTO 170

220 LPRINT “IMPACT AT APPROXIMATELY " ; T/86400 ; “ DAYS”

RUN

IMPACT AT APPROXIMATELY 64.4 DAYS
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with initial conditions
dx @)

Z=O,x=aatt=0

If we multiply Eq. (6) by % and inte-
grate, we have
iy oM @
2| dt

x
which on substitution of (7) and simpli-
fication becomes

d£=_/2MG /a—x ©)
dt a X
dx

. . dt
We note that the reciprocal of 2 S e

so that

= - . J_x——
dt /2MG a_xdx

Integrating by way of the trigonometric
substitution x = a cos” 6, we find that

(1

(10)

N
t = 2MG[x(a X)

X
+ a arccos [/ —
a

For the solar swan dive, x = 0, so
an a (12)

2V 2MG
Witha =1A.U,, t = 64.6 days.

Conclusion

Many problems not generally con-
sidered in first-year physics classes are
solvable by noncalculus physics. Show-
ing students that they have the means to
solve problems “not in the book™ can
increase their confidence and their
willingness to attempt a variety of pro-
blem-solving methods. The authors
believe that presenting a variety of
methods of solution (or better, having
students search for a variety of methods)
may encourage creative thinking and
better integration of the topics covered
in an introductory physics course.
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